Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhancing efficiency of Cu(In, Ga)Se2 solar cells on flexible stainless steel foils using NaF co-evaporation

Identifieur interne : 000D39 ( Main/Repository ); précédent : 000D38; suivant : 000D40

Enhancing efficiency of Cu(In, Ga)Se2 solar cells on flexible stainless steel foils using NaF co-evaporation

Auteurs : RBID : Pascal:13-0188661

Descripteurs français

English descriptors

Abstract

The fabrication of Cu(In,Ga)Se2 (CIGS) thin film solar cells on flexible stainless steel (SS) foils or Na free substrates needs the impurity blocking barrier to prevent the diffusion of undesired elements from the substrate into the CIGS as well as the addition of alkali doping especially Na in the CIGS absorber layer. The amount Na in terms of the thicknesses of NaF was varied from 30 A to 200 A in order to study its contributions to the efficiency of the CIGS solar cells. The results show that the Na content in the CIGS films has a direct influence to the open-circuit voltage leading to the energy conversion efficiency and affects the distribution of Ga in the CIGS film. The influence of Na was studied and compared, based on the results of the performance of the solar cells, by using the NaF co-evaporation in various steps during the CIGS deposition process. The optimum thickness of NaF is approximately 50 A to achieve the maximum efficiency of 15.8% without antireflection coating. In addition, the quantum efficiency (QE) indicated different absorption in the long wavelength regions depending upon the methods of Na addition.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0188661

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Enhancing efficiency of Cu(In, Ga)S
<sub>e</sub>
2 solar cells on flexible stainless steel foils using NaF co-evaporation</title>
<author>
<name sortKey="Thongkham, W" uniqKey="Thongkham W">W. Thongkham</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10330</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Research Center in Thin Film Physics, Thailand Center of Excellence in Physics, CHE, 328 Si Ayutthaya Rd.</s1>
<s2>Bangkok 10400</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pankiew, A" uniqKey="Pankiew A">A. Pankiew</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Thai Microelectronics Center, Suwintawong Rd.</s1>
<s2>Chachoengsao 24000</s2>
<s3>THA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Chachoengsao 24000</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoodee, K" uniqKey="Yoodee K">K. Yoodee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10330</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Research Center in Thin Film Physics, Thailand Center of Excellence in Physics, CHE, 328 Si Ayutthaya Rd.</s1>
<s2>Bangkok 10400</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chatraphorn, S" uniqKey="Chatraphorn S">S. Chatraphorn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10330</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Research Center in Thin Film Physics, Thailand Center of Excellence in Physics, CHE, 328 Si Ayutthaya Rd.</s1>
<s2>Bangkok 10400</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Bangkok 10400</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0188661</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0188661 INIST</idno>
<idno type="RBID">Pascal:13-0188661</idno>
<idno type="wicri:Area/Main/Corpus">000D49</idno>
<idno type="wicri:Area/Main/Repository">000D39</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-092X</idno>
<title level="j" type="abbreviated">Sol. energy</title>
<title level="j" type="main">Solar energy</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Antireflection coating</term>
<term>Codeposition</term>
<term>Comparative study</term>
<term>Conversion rate</term>
<term>Copper selenides</term>
<term>Deposition process</term>
<term>Doping</term>
<term>Energetic efficiency</term>
<term>Energy conversion</term>
<term>Flexible structure</term>
<term>Gallium selenides</term>
<term>Impurity</term>
<term>Indium selenides</term>
<term>Manufacturing process</term>
<term>Open circuit voltage</term>
<term>Performance evaluation</term>
<term>Quantum yield</term>
<term>Quaternary compound</term>
<term>Solar cell</term>
<term>Stainless steel</term>
<term>Thickness</term>
<term>Thin film cell</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Evaluation performance</term>
<term>Cellule solaire</term>
<term>Codépôt</term>
<term>Cellule couche mince</term>
<term>Impureté</term>
<term>Dopage</term>
<term>Matériau absorbant</term>
<term>Epaisseur</term>
<term>Tension circuit ouvert</term>
<term>Conversion énergie</term>
<term>Rendement énergétique</term>
<term>Taux conversion</term>
<term>Etude comparative</term>
<term>Procédé dépôt</term>
<term>Procédé fabrication</term>
<term>Revêtement antiréfléchissant</term>
<term>Rendement quantique</term>
<term>Structure flexible</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Acier inoxydable</term>
<term>Cu(In,Ga)Se2</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
<term>Rendement énergétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The fabrication of Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin film solar cells on flexible stainless steel (SS) foils or Na free substrates needs the impurity blocking barrier to prevent the diffusion of undesired elements from the substrate into the CIGS as well as the addition of alkali doping especially Na in the CIGS absorber layer. The amount Na in terms of the thicknesses of NaF was varied from 30 A to 200 A in order to study its contributions to the efficiency of the CIGS solar cells. The results show that the Na content in the CIGS films has a direct influence to the open-circuit voltage leading to the energy conversion efficiency and affects the distribution of Ga in the CIGS film. The influence of Na was studied and compared, based on the results of the performance of the solar cells, by using the NaF co-evaporation in various steps during the CIGS deposition process. The optimum thickness of NaF is approximately 50 A to achieve the maximum efficiency of 15.8% without antireflection coating. In addition, the quantum efficiency (QE) indicated different absorption in the long wavelength regions depending upon the methods of Na addition.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-092X</s0>
</fA01>
<fA02 i1="01">
<s0>SRENA4</s0>
</fA02>
<fA03 i2="1">
<s0>Sol. energy</s0>
</fA03>
<fA05>
<s2>92</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Enhancing efficiency of Cu(In, Ga)S
<sub>e</sub>
2 solar cells on flexible stainless steel foils using NaF co-evaporation</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>THONGKHAM (W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PANKIEW (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YOODEE (K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHATRAPHORN (S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Chulalongkorn University</s1>
<s2>Bangkok 10330</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Research Center in Thin Film Physics, Thailand Center of Excellence in Physics, CHE, 328 Si Ayutthaya Rd.</s1>
<s2>Bangkok 10400</s2>
<s3>THA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Thai Microelectronics Center, Suwintawong Rd.</s1>
<s2>Chachoengsao 24000</s2>
<s3>THA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>189-195</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8338A</s2>
<s5>354000504155050180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0188661</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The fabrication of Cu(In,Ga)Se
<sub>2</sub>
(CIGS) thin film solar cells on flexible stainless steel (SS) foils or Na free substrates needs the impurity blocking barrier to prevent the diffusion of undesired elements from the substrate into the CIGS as well as the addition of alkali doping especially Na in the CIGS absorber layer. The amount Na in terms of the thicknesses of NaF was varied from 30 A to 200 A in order to study its contributions to the efficiency of the CIGS solar cells. The results show that the Na content in the CIGS films has a direct influence to the open-circuit voltage leading to the energy conversion efficiency and affects the distribution of Ga in the CIGS film. The influence of Na was studied and compared, based on the results of the performance of the solar cells, by using the NaF co-evaporation in various steps during the CIGS deposition process. The optimum thickness of NaF is approximately 50 A to achieve the maximum efficiency of 15.8% without antireflection coating. In addition, the quantum efficiency (QE) indicated different absorption in the long wavelength regions depending upon the methods of Na addition.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Codépôt</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Codeposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Codeposición</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Impureté</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Impurity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Impureza</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Doping</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Doping</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Rendement énergétique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Energetic efficiency</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Rendimiento energético</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Procédé dépôt</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Deposition process</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Procedimiento revestimiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Procédé fabrication</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Manufacturing process</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Procedimiento fabricación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Revêtement antiréfléchissant</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Antireflection coating</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Revestimiento antirreflexión</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Rendement quantique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Quantum yield</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Rendimiento quántico</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Structure flexible</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Flexible structure</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estructura flexible</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Acier inoxydable</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Stainless steel</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Acero inoxidable</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>168</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D39 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D39 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0188661
   |texte=   Enhancing efficiency of Cu(In, Ga)Se2 solar cells on flexible stainless steel foils using NaF co-evaporation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024